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Counting Edges, Wedges, and Triangles over
Fully Distributed Graphs with Distributed Trust

Pinghui Wang, Senior Member, IEEE , Dongxu Zeng, Shiqi Lou, Haoxin Yang, and Tao Qin

Abstract—Graph pattern mining is vital for understanding complex graph structures, including counting edges, wedges, and triangles.
In practice, graphs are frequently fully distributed, with each node (e.g., a mobile phone user) maintaining local connections (e.g.,
phone contacts) within the larger graph (e.g., phone contact network). Privacy concerns prevent centralizing the graph by gathering
each node’s connections. Existing research primarily concentrates on local differential privacy (LDP) mechanisms for computing
subgraphs in large-scale graphs, overlooking the unique challenges that smaller graphs present. In this paper, we reveal the limitations
of LDP-based techniques, which result in significant estimation inaccuracies for small to medium-sized graphs (e.g., those with fewer
than 4,000,000 nodes). To address these limitations, we novelly introduce secure multi-party computation (MPC) protocols to
effectively count edges, wedges, and triangles in fully distributed graphs. These protocols can safeguard against differential attacks
while preserving the privacy of individual nodes’ connections. Our comprehensive evaluations on a diverse range of real-world and
synthetic datasets demonstrate the enhanced performance and effectiveness of our proposed protocols. Most notably, our triangle
counting protocol exhibits a significant 100 times improvement in accuracy over baseline methods, solidifying our work as a compelling
addition to the field of graph pattern mining.

Index Terms—triangle counting, differential privacy, secure multi-party computation.

✦

1 INTRODUCTION

G RAPHS are a powerful and versatile data structure
employed across a wide variety of applications in com-

puter science, business, science, medicine, and other fields.
Social networks, online shopping networks, and countless
other real-world networks can be effectively modeled as
graphs that capture interactions (i.e., edges) between entities
(i.e., nodes). Owing to their ubiquity, graphs form the back-
bone of numerous systems, and mining graph structures is
essential for comprehending the corresponding real-world
scenarios.

The process of counting edges, wedges, and triangles in
graphs holds paramount importance in subgraph counting
and graph data mining. This process unveils critical insights
into a graph’s structure, such as clustering coefficients, tran-
sitivity, network motifs, and community structures. Clus-
tering coefficients measure the extent to which nodes in a
graph tend to cluster together, signaling the presence of
tightly connected groups. Transitivity quantifies the likeli-
hood of adjacent vertices of a vertex being interconnected,
which can help identify strongly connected substructures.
Network motifs are small subgraphs that recur more fre-
quently in the graph than expected by chance, serving as
building blocks for the larger network architecture. Com-
munity structures represent groups of nodes with dense
internal connections and sparse external connections, which
can assist in understanding the organization and function of
various networks. By counting edges, wedges, and triangles,
we can efficiently analyze these properties and gain a deeper
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understanding of the underlying graph’s characteristics.
In real-world applications, the graph of interest may

sometimes be presented in a fully distributed manner.
Specifically, each node (e.g., a user) maintains its neigh-
bor list locally and is unaware of any edges beyond its
connections to neighboring nodes. Users will share only
non-identifying summary statistics rather than their contact
lists or local networks. Disclosing edge data between users
could lead to severe and even legal repercussions for the
owner. Imagine a skilled hacker gaining access to users’
financial transactions, social media connections, and phone
call records, all fully distributed graphs. It would be easy
for them to deduce highly sensitive information about a
specific user, such as their financial status, LGBT affiliation,
or AIDS history. Owing to these privacy concerns, people
are generally reluctant to release their contact lists. Fur-
thermore, modern legislation prohibits organizations from
constructing an entire graph by centrally collecting and
storing users’ neighbor lists. As a result, each node retains
a local view of the distributed graph, necessitating secure
solutions for mining the graph without exposing any node’s
connections.

Our research aims to address these challenges by devel-
oping reliable and secure protocols to mine fully distributed
graphs, without compromising privacy. Recent works have
leveraged centralized differential privacy (CDP) to protect
users’ personal information under the assumption of a
trusted third party. However, centralized data holders are
prone to attacks by adversaries, potentially resulting in
extensive privacy breaches. Thus, an increasing number of
researchers are investigating the implementation of differen-
tial privacy algorithms on local clients (in short, LDP). For
instance, Imola et al. [1] proposed a two-round interaction
strategy in local differential privacy, significantly reducing
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estimation error for triangle counting tasks. Liu et al. [2]
considered the relationship between nodes and collected
them to enhance data usability under LDP settings. Sun et
al. [3] presented a multi-phase framework to protect each
node’s information and the privacy of its 2-hop neighbors.

Despite the advances in graph mining techniques, cur-
rent methods still exhibit significant estimation errors, par-
ticularly in small and medium-sized graphs. For instance,
experimental results from Imola et al. [4] showed that the
relative error of triangle count estimation was approxi-
mately 10 in a graph sampled from the Gplus dataset
containing 104 nodes. Moreover, in another study [1], the
relative error reached 5 for a graph with 2× 104 nodes from
the Gplus dataset and skyrocketed to 100 for a graph with
2 × 105 nodes from the Orkut dataset. These errors render
such methods impractical for real-world applications. In
many cases, the graphs of interest are equal to or smaller
than the sizes mentioned above. Examples include graphs
representing individuals within a community, such as stu-
dents in a school, users of a newly-released phone app,
patients in a suburban clinic, scholars within a research com-
munity, university faculty, or company employees. These
networks generally comprise a significantly smaller number
of nodes, often less than a million or even just thousands.
Existing methods struggle to achieve adequate accuracy on
these smaller networks, resulting in a pressing need for
more precise and reliable graph mining techniques.

To address the limitations of existing LDP-based meth-
ods for characterizing fully distributed graphs with small
and medium sizes, we propose novel protocols based on
secure multi-party computation (MPC). We utilize several
non-colluding servers to gather information about each
node’s connections. Each server holds a piece (i.e., a secret
share) of each node’s edge/subgraph statistic, and a server
cannot infer any information about a node from the node’s
secret share sent to the server. Based on the collected secret
shares, we propose efficient protocols to compute the num-
ber of edges, wedges, and triangles using secure multi-party
computations. Our main contributions are summarized as
follows:

• To the best of our knowledge, we are the first to propose
MPC-based protocols for counting the edges, wedges,
and triangles in fully distributed graphs. We also in-
clude effective differential noise to protect against dif-
ferential attacks.

• We theoretically analyze the performance of our MPC-
based protocols. We show that they complement com-
putationally lightweight LDP-based protocols and min-
imize estimation error for small and medium-sized
graphs (e.g., graphs with fewer than 4,000,000 nodes).
However, our protocols require extensive computation
for larger graphs.

• We conduct extensive experiments on various real-
world and synthetic graph datasets. We demonstrate
that our protocols outperform baseline methods in
accuracy by at least two orders of magnitude under
comparable or even lower computational costs for small
and medium-sized graphs.

The remainder of this paper is organized as follows.
Section 2 presents the problem formulation. Section 3 de-

TABLE 1: Table of notations.

G the undirected graph of interest

V the set of nodes in graph G, that is, V = {1, . . . , n}

E the set of edges in graph G

f(G) the real number of subgraphs in graph G

f
′
(G) the estimated number of subgraphs in graph G

n the number of nodes in graph G

m the number of edges in graph G

∧ the number of wedges in graph G

∆ the number of triangles in graph G

Ni the set of node i’s neighbors

di the degree of node i, i.e., di = |Ni|

Aij (i, j) entry of the adjacency matrix A of graph G

Wij the number of wedges including endpoints i, j

c the number of servers used in our MPC protocols

JxKs the secret share of a variable x holding by server s

L L is defined as L = 1
2
n(n− 1)

∆f the sensitivity of function f

scribes our MPC protocols for counting the edges, wedges,
and triangles. Section 4 discusses performance evaluation
and testing results. Section 5 summarizes related work. The
conclusion is provided in Section 6.

2 PROBLEM FORMULATION

Notation. Let G = (V,E) be the undirected graph of
interest, where V = {1, . . . , n} and E are the node set and
the edge set, respectively. Each node i ∈ V represents a
user (e.g., a community member V ). For each user i, the
set of its neighbors (e.g., friends in the community), i.e.,
Ni = {j : (i, j) ∈ E} is held by user i locally. Denote di as
the number of different neighbors of user i, i.e., di = |Ni|.
Let m denote the number of edges, i.e., m = |E|. Denote
by ∧ the number of wedges (i.e.,{(u, v, w) : (u, v), (v, w) ∈
E, u, v, w ∈ V }, and ∆ the number of the triangles
(i.e.,{{u, v, w} : (u, v), (u,w), (v, w) ∈ E, u, v, w ∈ V }). We
summarize notations used throughout the paper in Table 1.
Target. We aim to design a protocol for privately counting m
(i.e., the number of edges), ∧ (i.e., the number of wedges),
and ∆ (i.e., the number of triangles) for graph G without
leaking information about any node i’s neighbor list Ni.
Threat models. Each user i ∈ V is semi-honest (i.e., honest
yet curious). In addition, there exist c non-colluded data-
collection servers where each server is also semi-honest. In
other words, a participant will not maliciously poison data
to attack the protocol but intend to infer sensitive informa-
tion from other participants. The non-colluding assumption
is widely adopted in recent lightweight privacy-preserving
systems built on distributed trust including academic sys-
tems [5], [6], [7], [8], [9], [10], [11], [12], [13] and industrial
systems [14], [15]. Our protocols are designed to provide the
following security guarantees:
• Completeness. If all users and all data-collection servers
honestly follow the protocol, then the results given by our
protocols are correct.
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Algorithm 1 Function SecShare(x,c).
Input: Secret variable: x; the number of shares c.
Output: c shares of variable x.

Initialize a large p;
for i=1,. . . ,c-1 do

randomly generate a variable JxKi from field Fp;
Compute JxKc ← (x−

∑c−1
i=1 JxKi) mod p;

Output (JxK1, . . . , JxKc).

• Privacy against the semi-honest users and servers. Each
user and each server cannot infer any confidential informa-
tion linked to any user from the output and the intermediate
results of our protocols.

3 MPC-BASED PROTOCOLS

In this section, we elaborate on our protocols for securely
computing the total number of edges, wedges, and triangles
in an undirected graph G = (V,E), respectively.

3.1 Protocol for Counting Edges
Basic Idea. For each user i ∈ V , let d∗i denote the number of
its neighbors with ID greater than i, i.e.,

d∗i = |{j : j ∈ Ni, j > i}|.

It is not difficult to find that the number of edges in graph
G can be computed as m =

∑n
i=1 d

∗
i . Based on the above

observation, we let each user i ∈ V secretly share its d∗i
to the data-collection servers and then compute the value
of m based on aggregating secret shares of all d∗i . Next, we
introduce our protocol MPC-CE for implementing the above
idea. The pseudo-code of our MPC-CE and the required
secret sharing algorithms are given in Algorithms 1 and 2.
Data Collection. We first introduce how a user i ∈ V
securely shares its d∗i to the c servers. As shown in
Algorithm 1, to secretly share an integer x in a field
Fp = {0, . . . , p − 1} over c data-collection servers, where
p is a large prime, the user first generates random vari-
ables JxK1, . . . , JxKc−1 selected independently and uni-
formly from field Fp. Each of JxK1, . . . , JxKc is a secret share
of x. Then, it computes JxKc = x −

∑c−1
s=1JxKs mod p.

Finally, the user sends JxK1, . . . , JxKc to servers 1, . . . , c,
respectively.

Using the above method, each user i securely shares its
degree di with all the servers.
Data Aggregation. Each server s ∈ {1, . . . , c} computes
its secret share of the number of edges m as: JmKs =∑n

i=1Jd
∗
i Ks. It is not difficult to find that JmKs can be

computed incrementally. In other words, each server s can
update JmKs as soon as receiving a user i’s shares JdiKs.
Edge Count Estimation Finally, we compute m =∑c

s=1JmKs and reveal the value of m.

3.2 Protocol for Counting Wedges
Basic Idea. We find that the number of wedges in graph
G can be computed as: ∧ =

∑n
i=1

di(di−1)
2 . Based on the

above observation, we let each user i ∈ V compute di(di−1)
2

and secretly share the value to the data-collection servers

Algorithm 2 Protocol MPC-CE for counting all edges in
graph G.
Data collection phase:
foreach user i ∈ {1, . . . , n} do

d∗i ← |{j : j ∈ Ni, j > i}|;
(Jd∗i K1, . . . , Jd∗i Kc)← SecShare(d∗i , c);
send Jd∗i K1, . . . , Jd∗i Kc to servers 1, . . . , c, respectively;

Data aggregation phase:
foreach server s = 1, . . . , c do JmKs ←

∑n
i=1Jd

∗
i Ks ;

Edge count estimation phase: m←
∑c

s=1JmKs.

Algorithm 3 Protocol MPC-CW for counting all wedges in
graph G.
Data collection phase:
foreach user i = 1, . . . , n do
∧i = 0.5× di(di − 1);
(J∧iK1, . . . , J∧iKc)← SecShare(∧i, c);
send J∧iK1, . . . , J∧iKc to servers 1, . . . , c, respectively;

Data aggregation phase:
foreach server s = 1, . . . , c do J∧Ks ←

∑n
i=1J∧iKs ;

Wedge count estimation phase: ∧ ←
∑c

s=1J∧Ks.

and then compute ∧ based on aggregating secret shares of
all di(di−1)

2 . Next, we introduce our protocol MPC-CW for
implementing the above idea. The pseudo-code of our MPC-
CW is given in Algorithm 3.
Data Collection. Similar to the protocol of counting edges,
each user i securely shares a variable ∧i = di(di−1)

2 to all the
servers.
Data Aggregation. Each server s ∈ {1, . . . , c} computes
its secret share of the number of wedges ∧s as J∧Ks =∑n

i=1J∧iKs.
Wedge Count Estimation. Finally, we compute ∧ =∑c

s=1J∧Ks and reveal the value of ∧.

3.3 Protocols for Counting Triangles

Basic Protocol. We first introduce a straightforward protocol
MPC-CT to implement the above idea. The pseudo-code of
our MPC-CT is given in Algorithm 4.
• Data Collection. Each user k ∈ V uses a vector Wk of
size (n−k)(n−k−1)

2 to record the wedges it observed, where
n denotes the total number of users. Each element of Wk is
initialized to 0. User k enumerates each pair of its neighbors
i, j ∈ Nk such that i < j and then sets

Wk =

{
Wk[j − i] = 1, i = k + 1

Wk[
1
2 (i− 2)(2n− i− 1) + j − i] = 1, i > k + 1

Similarly, user k uses a vector Ak of size n−k to record
the edges it observed. Each element of Ak is initialized to
0. User k enumerates each of its neighbors i ∈ Nk and then
sets

Ak[i− k] = 1.
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Algorithm 4 Protocol MPC-CT for counting all triangles in
graph G.
Data collection phase:
foreach user k = 1, . . . , n do

Ak ← (Ak[1], . . . , Ak[n− k])← (0, . . . , 0);
Wk ← (Wk[1], . . . ,Wk[

1
2 (n−k)(n−k−1)])← (0, . . . , 0);

foreach i ∈ Nk do
Ak[i− k]← 1;
foreach j ∈ Nk do

if i < j & i = k + 1 then
wk[(i− 1)n+ j]← 1;

if i < j & i > k + 1 then
Wk[

1
2 (i− 2)(2n− i− 1) + j − i]← 1;

(JAkK1, . . . , JAkKc)← SecShare(Ak, c);
(JWkK1, . . . , JWkKc)← SecShare(Wk, c);
send (JAkK1, JWkK1), . . . , (JAkKc, JWkKc) to servers 1,
. . . , c, respectively;

Data aggregation phase:
foreach server s ∈ {1, . . . , c} do

JAKs ← Concat(JA2Ks, . . . , JAnKs);
JW Ks ←

∑n
k=1JWkKs;

Triangle count estimation phase:

(J∆K1, . . . , J∆Kc)← Product(JAK, JW K);
/* Product performed collaboratively by all servers

computes the product of vector JAK and JW K, and

each server will generate a portion of the result

J∆Kc stored in a secret share form. */

Output ∆←
∑c

s=1J∆Ks.

After computing the Ak and Wk, similar to the proto-
col of counting edges, each user k securely shares the vectors
Ak and Wk to all the servers.
• Data Aggregation. For each A and W , each server s ∈
{1, . . . , c} computes their secret shares as:

JAKs = Concat(JA1Ks, . . . , JAnKs), JW Ks =
n∑

k=1

JWkKs,

where Concat represents the concatenation of the given
vectors.
• Triangle Count Estimation. Denote

JAK = JAK1 + . . .+ JAKc, JW K = JW K1 + . . .+ JW Kc.

Each server s holds shares JAKs and JW Ks of the vectors JAK
and JW K. All the servers can collaboratively compute the
JAK × JW K and the result is also stored in the secret share
form. Specifically, each server computes a secret share J∆Ks
of the final result ∆. Thus, the secret shares of JAK × JW K
are computed as:

(J∆K1, . . . , J∆Kc) = Product(JAK, JW K),

where Product [16] is a function computing the product
of two variables stored in a secret share from. Finally, we
reveal the value of ∆ as:

∆ =
c∑

s=1

J∆Ks.

Let A denote the adjacency matrix of graph G = (V,E).
The (i, j) entry Aij of A equals 1 when existing an edge
(i, j) ∈ E and 0 otherwise. In addition, we denote W as the
wedge count matrix, where each element Wij records how
many neighbors nodes i and j have in common. Formally,
we define Wij as:

Wij = |{(i, k, j) : (i, k) ∈ E, (k, j) ∈ E, i, j, k ∈ V }|.

Because each triangle is reported three times by its three
nodes, then, we easily find

∆ =
1

3

∑
1≤i<j≤n

Aij ×Wij . (1)

Improved protocol. The MPC-CT protocol only involves
three servers in the calculation, and each server needs to
perform multiplications on the 4 received shared variables.
It’s inefficient on either communication overhead or com-
putation complexity. Next, we introduce a protocol MPC-
CT++ which extends MPC-CT to the case that three servers
participate in our protocol, and meanwhile cut down on
unnecessarily expensive operations. The pseudo-code of our
MPC-CT++ is given in Algorithm 5.
• Data Collection. Our MPC-CT++ uses the 2-out-of-3
replicated secret sharing from Araki et al. [17]. Specifically,
to secretly share a number x ∈ Fp across three servers,
we first split x into three shares. That is, generate two
random variables JxK1, JxK2 ∈ Fp according to the uniform
distribution and then compute JxK3 = x − JxK1 − JxK2
mod p in field Fp. Finally, we send (JxK1, JxK2) to server
1, (JxK2, JxK3) to server 2, and (JxK1, JxK3) to server 3.

After each user k computing Ak, using the above pro-
tocol, we secretly share each element Ak[l], l = 1, . . . , n− k
as the following procedure. Send (JAkK1, JAkK2) to server 1,
(JAkK1, JAkK3) to server 2, and (JAkK2, JAkK3) to server 3.

After each user k computing Wk, we use another
different protocol to secretly share each element Wk[l],
l = 1, . . . , 1

2 (n − k)(n − k − 1) among the three servers.
Specifically, we generate three independently generated se-
cret share tuples, i.e., (JWkK

(1)
1 , JWkK

(2)
1 ), (JWkK

(1)
2 , JWkK

(3)
1 ),

(JWkK
(2)
2 , JWkK

(3)
2 ), where the following equations hold:

Wk = JWkK
(1)
1 + JWkK

(2)
1 = · · · = JWkK

(2)
2 + JWkK

(3)
2 .

Then, we arrange all six elements in three tuples and send
(JWkK

(1)
1 , JWkK

(1)
2 ) to server 1, send (JWkK

(2)
1 , JWkK

(2)
2 ) to

server 2, and send (JWkK
(3)
1 , JWkK

(3)
2 ) to server 3.

Therefore, we list the vector tuples each server pos-
sesses as below:

server 1 : (JAkK1, JAkK2, JWkK
(1)
1 , JWkK

(1)
2 ), k = 1, . . . , n;

server 2 : (JAkK1, JAkK3, JWkK
(1)
2 , JWkK

(3)
1 ), k = 1, . . . , n;

server 3 : (JAkK2, JAkK3, JWkK
(2)
2 , JWkK

(3)
2 ), k = 1, . . . , n.

•Data Aggregation. For adjacent vectors, after receiving the
secret share tuples of JAK, each sever concatenates them to
form aggregated vectors. In particular, server 1 obtains:

JAK(1)1 = Concat(JA1K1, . . . , JAnK1),

JAK(1)2 = Concat(JA1K2, . . . , JAnK2);
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server 2 obtains:

JAK(2)1 = Concat(JA1K1, . . . , JAnK1),

JAK(2)2 = Concat(JA1K3, . . . , JAnK3);

server 3 obtains:

JAK(3)1 = Concat(JA1K2, . . . , JAnK2),

JAK(3)2 = Concat(JA1K3, . . . , JAnK3).

Each aggregated vector indicates a secret share of the com-
plete adjacent vector JAK, and its size is L in total.

Similarly, for wedge vectors, each server collects the
secrete share tuples of JW K and performs element-wise
addition to achieve aggregated vectors. In particular, server
1 obtains:

JW K(1)1 =
n∑

k=1

JWkK
(1)
1 , JW K(1)2 =

n∑
k=1

JWkK
(1)
2 ;

server 2 obtains:

JW K(2)1 =
n∑

k=1

JWkK
(2)
1 , JW K(2)2 =

n∑
k=1

JWkK
(2)
2 ;

server 3 obtains:

JW K(3)1 =
n∑

k=1

JWkK
(3)
1 , JW K(3)2 =

n∑
k=1

JWkK
(3)
2 .

The total length of the aggregated vectors is also L.
• Triangle Count Estimation. Given secret share vectors
JAK(1)1 , JAK(1)2 , JW K(1)1 , and JW K(1)2 holding by server 1,
server 1 computes:

J∆K1 ←
L∑

l=1

JA[l]K(1)1 × JW [l]K(1)1 + JA[l]K(1)2 × JW [l]K(1)2 .

Similarly, server 2 computes:

J∆K2 ←
L∑

l=1

JA[l]K(2)1 × JW [l]K(2)1 + JA[l]K(2)2 × JW [l]K(2)2 ,

and server 3 computes:

J∆K3 ←
L∑

l=1

JA[l]K(3)1 × JW [l]K(3)1 + JA[l]K(3)2 × JW [l]K(3)2 .

Finally, we obtain the value of ∆ = (J∆K1 + J∆K2 + J∆K3).

3.4 Distributed Additive Noise Mechanisms for Protect-
ing Count Results

Before revealing the values of m, ∧, and ∆, we can
protect these variables against differential attacks by using
additive noise mechanisms for achieving differential pri-
vacy. Dwork et al. [18] give the formal definition of DP as:
Differential Privacy (DP). Let D be a collection of all
datasets. A randomized algorithm M : D → Y satisfies
(ε, δ)-differential privacy if and only if for all pairs of
x, x′ ∈ D differ in at most one element, for all events E ⊆ Y ,
the following inequality holds:

P (M(x) ∈ E) ≤ exp(ε)P (M(x′) ∈ E) + δ.

Algorithm 5 Protocol MPC-CT++ for counting all triangles
in graph G.
Data collection phase:
foreach user k = 1, . . . , n do

Ak ← (Ak[1], . . . , Ak[n− k])← (0, . . . , 0);
Wk ← (Wk[1], . . . ,Wk[

1
2 (n−k)(n−k−1)])← (0, . . . , 0);

foreach i ∈ Nk do
Ak[i− k]← 1;
foreach j ∈ Nk do

if i < j & i = k + 1 then
wk[(i− 1)n+ j]← 1;

if i < j & i > k + 1 then
Wk[

1
2 (i− 2)(2n− i− 1) + j − i]← 1;

(JAkK1, JAkK2, JAkK3)← SecShare(Ak, 3);
send (JAkK1, JAkK2) to server 1;
send (JAkK1, JAkK3) to server 2;
send (JAkK2, JAkK3) to server 3;

(JWkK
(1)
1 , JWkK

(2)
1 )← SecShare(Wk, 2);

(JWkK
(1)
2 , JWkK

(3)
1 )← SecShare(Wk, 2);

(JWkK
(2)
2 , JWkK

(3)
2 )← SecShare(Wk, 2);

send (JWkK
(1)
1 , JWkK

(1)
2 ) to server 1;

send (JWkK
(2)
1 , JWkK

(2)
2 ) to server 2;

send (JWkK
(3)
1 , JWkK

(3)
2 ) to server 3;

Data aggregation phase:
server 1 computes:
JAK(1)1 ← Concat(JA2K1, . . . , JAnK1);
JAK(1)2 ← Concat(JA2K2, . . . , JAnK2);
(JW K(1)1 , JW K(1)2 )← (

∑n
k=1JWkK

(1)
1 ,

∑n
k=1JWkK

(1)
2 );

server 2 computes:
JAK(2)1 ← Concat(JA2K1, . . . , JAnK1);
JAK(2)2 ← Concat(JA2K3, . . . , JAnK3);
(JW K(2)1 , JW K(2)2 )← (

∑n
k=1JWkK

(2)
1 ,

∑n
k=1JWkK

(2)
2 );

server 3 computes:
JAK(3)1 ← Concat(JA2K2, . . . , JAnK2);
JAK(3)2 ← Concat(JA2K3, . . . , JAnK3);
(JW K(3)1 , JW K(3)2 )← (

∑n
k=1JWkK

(3)
1 ,

∑n
k=1JWkK

(3)
2 );

Triangle count estimation phase:
sever 1 computes:
J∆K1 ←

∑L
l=1JA[l]K(1)1 × JW [l]K(1)1 + JA[l]K(1)2 × JW [l]K(1)2 ;

sever 2 computes:
J∆K2 ←

∑L
l=1JA[l]K(2)1 × JW [l]K(2)1 + JA[l]K(2)2 × JW [l]K(2)2 ;

sever 3 computes:
J∆K3 ←

∑L
l=1JA[l]K(3)1 × JW [l]K(3)1 + JA[l]K(3)2 × JW [l]K(3)2 ;

Output ∆← (J∆K1 + J∆K2 + J∆K3).

Additive Noise Mechanisms (ANMs). ANMs [18], [19] are
differential private mechanisms that add controlled noise
from predetermined distributions. ANMs are useful for
designing private mechanisms for real-valued functions on
sensitive data. Formally, let f : D → R be a real-value
function with sensitivity ∆f defined as

∆f = max |f(x)− f(y)|, (2)

where the maximum is over all pairs of datasets x and y
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in D differing in at most one element. ANMs protect f(x)
against differential attacks by adding a noise variable r, i.e.,

M(x, f) = f(x) + r.

Gaussian and Laplacian distributions are the com-
monly used distributions for adding noise. When r ∼
N

(
µ = 0, σ2 =

2 ln(1.25/δ)(∆f )
2

ε2

)
, where parameter µ is the

expectation of the Gaussian distribution and parameter σ
is its standard deviation, function M(x, f) achieves (ε, δ)-
differential privacy. When r ∼ Lap

(
µ = 0, b =

∆f

ε

)
where

parameter µ is the expectation of the Laplace distribution
and parameter b is the scale parameter, function M(x, f)
achieves (ε, 0)-differential privacy.

In the setting of our problem, each server is semi-
honest and we cannot rely on a single server to generate the
additive differential noise variable r. To solve this issue, we
use the following distributed additive noise mechanisms.
Distributed Additive Gaussian Noise Mechanism. Each
data-collection server s ∈ {1, . . . , c} generates a noise vari-
able rs ∼ N (0, σ2/c). Then, the sum of all noise variables
generated by the servers is also a Gaussian variable accord-
ing to N (0, σ2), i.e.,

c∑
s=1

rs ∼ N (0, σ2).

To protect against differential attacks, therefore, each server
s generates rs and adds rs to the secret share JxKs of variable
x holding by itself before revealing the value of x.
Distributed Additive Laplacian Noise Mechanism. Similar
to the above distributed additive Gaussian noise mecha-
nism, we let each server s generate two independent vari-
ables Xs, Ys ∼ Γ (k = 1/c, θ = b), where k and θ are two
parameters of the Gamma distribution. Then, we have

c∑
s=1

(Xs − Ys) ∼ Lap(0, b).

To protect a variable x against differential attacks, thus, each
server s generates Xs and Ys and then adds Xs − Ys to
the secret share JxKs of variable x holding by itself before
revealing the value of x.
Sensitivities of Edge, Wedge, and Triangle Counts. We
easily find that one edge insertion (resp. deletion) increases
(resp. decreases) the value of m (i.e., the number of edges)
by 1. Therefore, the sensitivity of m defined in Eq. (2) is
∆m = 1. As we mentioned, graph G consists of n nodes.
Given an edge (u, v) such that u, v ∈ {1, . . . , n} to be
removed from or inserted into graph G, there exist at most
n − 2 wedges including this edge (u, v). Therefore, the
sensitivity of ∧ (i.e., the number of wedges) is ∆∧ = n − 2.
Similarly, we find that the sensitivity of ∆ (i.e., the number
of triangles) is ∆∆ = n− 2.

3.5 Utility, Overhead, and Complexity
Utility Analysis. The proposed method offers a significant
benefit in the accurate computation of JmKs, J∧Ks, and J∆Ks
by each server s using the received secret shares. The source
of error in this process is the additive noise introduced
when a server s reveals its calculations. As a result, when
aggregating these computations, the protocols deliver high

data utility with the outcome f̂(G) = f(G) + r, where
the estimation error stems exclusively from the noise term
r added to the ground truth subgraph count f(G). By
assessing the magnitude of r, one can establish an expected
utility value.

It warrants emphasis that the MPC-CT and MPC-CT++
protocols yield identical error estimations. Therefore, in the
forthcoming experimental section concerning error compar-
ison, they are collectively treated as a single MPC-based pro-
tocol due to their common estimation error. The evaluation
focuses on the MPC-based method in conjunction with the
Gaussian noise mechanism and the Laplacian noise mech-
anism (i.e., MPC-G and MPC-L). Conversely, when scru-
tinizing overhead comparisons, MPC-CT and MPC-CT++
manifest disparities that necessitate discrete consideration,
thus facilitating a more comprehensive comparison with
other protocols.

To begin this process, we adopt Mean Relative Error
(MRE):

MRE ≜
|f̂(G)− f(G)|

f(G)
=
|r|

f(G)
,

as our utility metric to exhibit our protocols’ accuracy.
A smaller value of MRE represents the better utility of
the algorithm. For (ε, δ)-differential privacy, r is subject to
the Gaussian distribution N (µ, σ), and therefore we can
compute the expectation of MRE by solving the following
integral:

MREE
G =

E(|r|)
f(G)

=

∫∞
−∞ |r|Φ(r)dr

f(G)
,

where Φ(r) is the probability density function (PDF) of the
Gaussian distribution, i.e.,

Φ(r) =
1√
2πσ

e−
(r−µ)2

2σ2 ,

where µ = 0 and σ =

√
2 ln(1.25/δ)·∆f

ε . Then, we substitute
Φ(r) to the integral and obtain:

MREE
G =

2
√
ln

(
1.25
δ

)
√
πε

· ∆f

f(G)
.

The first term of the above formula is decided by specific
differential privacy settings of (ε, δ), and the properties of
graph data determine the second term. Similar derivation
as above, when r ∼ Lap(µ, b), the PDF of the Laplacian
distribution is written as Ψ(r) = 1

2be
− |r−µ|

b , where µ = 0

and b =
∆f

ε . Afterwards we substitute the formula of Ψ(r)
into the following integral function of MREE

L and acquire the
concluding expression:

MREE
L =

∫∞
−∞ |r|Ψ(r)dr

f(G)
=

1

ε
· ∆f

f(G)
.

It’s apparent from the above equation that the MREE
L is also

mainly influenced by DP settings and graph properties.
Overhead and Complexity. When analyzing memory con-
sumption and complexity, we find that the MPC-CE and
MPC-CW protocols exhibit minimal memory requirements.
In these protocols, each server is responsible for managing
a single integer number from n users, leading to both
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Fig. 1: In the fully distributed graph G with 6 nodes, each node represents a client k possessing a local subgraph Gk.
The illustration depicts server 1 collecting JAkK1 and JWkK1 from clients, with other servers acting similarly. Server 1 then
aggregates the JWkK1 values to obtain JW K1, and concatenates the JAkK1 values to derive JAK1.

the transfer of n data and the performance of n integer
additions for each server. In contrast, our proposed MPC-
CT and MPC-CT++ protocols primarily involve matrix and
vector operations, which are 1

2 (n − 1)(n − 2) times larger
than a single integer. Thus, the following paragraphs will
concentrate on the overhead and complexity of the MPC-CT
and MPC-CT++ protocols.

The transmission of adjacency matrices and wedge
matrices is a requirement for both the MPC-CT and MPC-
CT++ protocols. In a single round of transmission, the entire
adjacency matrices and wedge matrices create a 2n3 total
communication overhead. This overhead occurs because
each of the n clients sends two matrices with a size of n2.
Due to the random decomposition of the original Ak and
Wk into secret-shared matrices, the sparse matrix method
is not suitable for these protocols.

To reduce the overhead, our protocols decrease the
communication overhead for a single JAKk and JW Kk to
n− k and 1

2 (n− k)(n− k − 1), respectively. This reduction
results in an overhead of 1

2n the size of the original JAKk
and 1

6 the size of the original JW Kk. The fundamental
approach involves transferring only the upper triangle of
the matrix instead of the entire matrix. As shown in Fig. 1,
for the adjacency matrix, each client only uploads the k-
th row of the upper triangle. For the wedge matrix, each
client extracts upper triangular elements below the k-th
row, where k represents the client’s number. The server-
side operation involves concatenating and re-organizing the
collected adjacency vectors and wedge matrix elements to
produce aggregated adjacency vector JAKi and JW Ki, both
with sizes of 1

2 (n−2)(n−1). An overview of the aggregation
operation is depicted in Fig. 1.

The total overhead for transferring A and W amounts
to 1

2 (n − 2)(n − 1) and 1
6n(n − 1)(n − 2), respectively.

This overhead is acceptable for moderately-sized graphs.

For instance, our experimental results show that when the
distributed graph contains 10,000 nodes, a server can collect
all required A and W from clients within 5.98 minutes.

The MPC-CT protocol involves n participating clients
and c servers and consists of an offline phase. In this phase,
each server stores a secret share of a pre-generated Beaver
multiplication triple, created using somewhat homomorphic
encryption techniques. During the online phase, each client
k generates c secret share groups for servers, and each
server collaborates with the other c − 1 servers. Both the
offline and online phases necessitate numerous temporary
variables for communication, the sizes of which remain
undetermined. As a result, we present empirical results
O(n3) obtained through sufficient experimental iterations
instead of analytical results.

The MPC-CT++ protocol exhibits increased efficiency in
both communication and complexity compared to the MPC-
CT protocol. It requires only three participating servers and
fewer multiplications to be computed. Each client sends a
group of secret vectors to a server, reducing the per-server
communication to 1

3 (n − 1)(n − 2)(n + 3). This efficiency
level is approximately 1000 times greater than that of the
MPC-CT protocol, as it eliminates the need for temporary
variables in interactive offline and online computing.

4 EXPERIMENTS

4.1 Experimental Setup
Dataset. In our experiments, we evaluate the performance
of our MPC-based protocol and compare it with state-
of-the-art LDP-based and DP-based methods using syn-
thetic datasets and twelve different real-world graphs. These
graphs, such as Facebook, Twitter and Youtube, predom-
inantly consist of small and medium-sized social networks
with fewer than 4,000,000 nodes. We procured these datasets
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TABLE 2: The statistics of the experimental datasets.

Dataset #nodes #edges #wedges #triangles

Email 1,005 16,706 1,183,216 105,461

FaceBook 4,039 88,234 9,314,849 1,612,010

Wiki-V 7,115 100,762 14,545,580 608,389

CondMat 23,133 93,497 1,967,650 173,361

SlashDot 77,360 469,180 68,516,301 551,724

Twitter 81,306 2,420,766 230,093,274 9,355,656

Stanford 281,903 1,992,636 3,944,069,093 11,329,473

Amazon 403,394 2,443,408 72,209,687 3,986,507

Google 875,713 4,322,051 727,417,224 13,391,903

YouTube 1,134,890 2,987,624 1,474,482,560 3,056,386

Wiki-T 2,394,385 4,659,565 12,593,522,422 9,203,519

Patents 3,774,768 16,518,948 335,781,273 7,515,023

from the Stanford Network Analysis Project (SNAP) [20]. Table
2 furnishes detailed information about the datasets.
Baselines. We assess our MPC-based protocols in the con-
text of various representative edge, wedge, and triangle
counting approaches, comprising:

1) Local2Rounds: A 2-round communication protocol un-
der the LDP settings, as proposed by Imola et al. [4]. In this
protocol, the client incorporates noise into its local subgraph
and uploads it to the server, which subsequently returns
the noisy graph to each client. This process enables clients
to make more precise predictions as their estimation of
local connections remains unbiased. Although the original
protocol does not encompass an edge-counting task, we
modified the provided code to accommodate our three
counting tasks, denoted as local2Roundsm, local2Rounds∧,
and local2Rounds∆.

2) ARRTwoNS: An enhanced protocol that curtails the
communication overhead of Local2Rounds [1]. This ap-
proach employs edge sampling and double clipping tech-
niques, substantially diminishing the sensitivity of each
query and decreasing the communication time from 6 hours
to 8 seconds. While the original code includes edge and
wedge counting tasks, we adapted it to suit our tasks,
resulting in ARRTwoNSm, ARRTwoNS∧, and ARRTwoNS∆.

3) WShuffle∗: A one-round interaction protocol based on
the shuffle model technique [21]. This method introduces
wedge shuffle to augment privacy while counting triangle
and 4-cycle subgraphs. It attains more precise clustering
tendencies with a relatively small privacy budget (e.g., less
than 1) in edge DP. We modified the code to facilitate the im-
plementation of our tasks, yielding WShuffle∗m, WShuffle∗∧,
and WShuffle∗∆.

4) 2Phases-RLDP: A protocol that introduces Relation Lo-
cal Differential Privacy (RLDP) to ensure robust privacy
protection [2]. The refined 2Phases-RLDP assesses each
client’s subgraph’s global data correlation and necessitates
clients to report their randomly sampled triangle numbers
to the server. The server then computes an approximate
global triangle count. The entire framework satisfies (ε, δ)-
Edge-RLDP. We also modified the source code to fit our
three tasks, resulting in 2Phases-RLDPm, 2Phases-RLDP∧,
and 2Phases-RLDP∆.
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Fig. 2: Relation between the MRE and edge density α in
different protocols, with n fixed to 10,000 and ε = 1.

Parameter settings. In our experiments, we set p =
2147483647, which is the largest prime number within
the int32 value range. This choice of parameters ensures
consistency and comparability across all experiments.

4.2 Experimental Results on synthetic datasets

To conduct a thorough ablation study, we create various
synthetic Erdős-Rényi graphs that exhibit a range of graph
properties, such as the number of nodes n and edge density
α, while also taking the privacy budget ε into account
as a variable. By analyzing these parameters, we aim to
demonstrate their impact on the accuracy and communica-
tion overhead of both our proposed protocols and existing
baseline protocols. By default, we generate a baseline graph
consisting of 1,0000 nodes and an edge density of 0.5, with
the privacy budget ε set to 1.
MRE vs. edge density α. Edge density is defined as follows:

α =
2e− n+ 1

(n− 1)(n− 2)
,

where e and n denote the number of edges and nodes,
respectively. Unlike the raw edge counts e, the edge density
metric α accounts for the number of edges and the graph
size, enabling a fair comparison of graph densities. In con-
nected undirected graphs, the edge count can range from
[n− 1, n(n−1)

2 ]. By normalizing the edge count with respect
to the total possible edges, α intuitively measures graph
density. To illustrate this point, consider two graphs, Ga

with n = 1, 000 and e = 100, 000, and Gb with n = 5, 000
and e = 100, 000. Despite having the same number of
edges, their edge densities differ αa = 0.2 for Ga and
αb = 0.0078 for Gb. This demonstrates the higher density
of Ga compared to Gb, highlighting the effectiveness of the
α metric.

Fig. 2(a) describes the edge counting task results, ac-
centuating the accuracy superiority in MRE across diverse
edge densities. A salient observation is the nearly horizontal
and overlapping trends demonstrated by the Local2Rounds,
ARRTwoNS, WShuffle∗ protocols, with an MRE of 1.6×10−4.
This finding suggests that these three protocols employ
analogous edge counting techniques, exhibiting limited sen-
sitivity to fluctuations in the parameter α. In contrast,
the 2Phases-RLDP protocol displays a modest decline in
MRE, extending from 2.22 × 10−5 to 2.19 × 10−6. The
proposed MPC-based methods, MPC-G, and MPC-L, exhibit
a more substantial reduction in MRE values. Specifically,
MPC-G experiences a decrease in MRE from 2.31 × 10−8
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Fig. 3: Relation between the MRE and nodes n in different
protocols, with α fixed to 0.5 and ε fixed to 1.

to 2.32 × 10−11, while MPC-L observes a reduction from
5.97× 10−9 to 6.00× 10−12.

Fig. 2(b) provides insights into the wedge counting
task. The 2Phases-RLDP protocol demonstrates higher MRE
values than other protocols, which declines from 3.30×10−4

to 2.98×10−5 as α increases, suggesting it might be less effi-
cient for sparse data. Nonetheless, it could offer advantages
in specific scenarios, such as those with resource constraints.
The Local2Rounds, ARRTwoNS, and WShuffle∗ protocols ex-
hibit overlapping trends and a similar decline speed in
MRE values as the 2Phases-RLDP protocol. Specifically, their
MRE values decrease approximately from 1.56 × 10−5 to
1.41 × 10−6 as α increases. This behavior indicates that
these protocols share similar wedge-counting approaches
and can adapt to different edge densities. In contrast, MPC-
G and MPC-L show a more significant MRE reduction as
α increases, reducing from 7.70 × 10−6 to 7.73 × 10−8

and 1.99 × 10−6 to 2.00 × 10−8, respectively. These results
highlight the adaptability and scalability of the MPC-based
methods in handling different edge densities.

Fig. 2(c) delineates the performance of diverse protocols
with respect to the triangle counting task. Although all
protocols exhibit decreasing MRE values as α increases,
notable variations are observed in the decline rate and
MRE value range among the methods. Evidently, our MPC-
based protocols consistently display the lowest MRE val-
ues, thereby attaining the highest data utility. For instance,
when ε = 6, the MRE values of the tested protocols are
9.15× 10−4, 1.92× 10−5, 0.83, 1.06× 10−5, 1.0734× 10−6,
and 2.78×10−07. The MPC-L protocol surpasses the existing
best protocol by a factor of 38 in terms of accuracy.

MPC-G and MPC-L not only exhibit the most promising
outcomes, with MRE values decreasing from 2.31× 10−4 to
2.32×10−7 and from 5.97×10−5 to 6.00×10−8, respectively,
but also display a 994-fold decline in their MRE values as the
graph becomes denser. Revisiting the analysis in Section 3.5,
our MPC-based methods exhibit a decline rate akin to an
inversely proportional function, while alternative strategies
demonstrate decline rates more characteristic of a negative
exponential function. The steeper decline rates observed in
the MPC-based methods indicate their potential for tackling
the triangle counting task in denser networks.
MRE vs. n. A salient observation in Fig. 3 is the con-
sistent decline in MRE as the number of nodes increases,
emphasizing that estimations related to graph data tend
to exhibit improved accuracy when a more extensive node
set is involved. Upon further examination of Fig. 3(a), it
is evident that Local2Rounds, ARRTwoNS, and WShuffle∗

display similar patterns of decline. This resemblance can
be attributed to their shared edge-counting techniques.
Initially, Local2Rounds possesses a higher MRE value of
approximately 3.50× 10−3 compared to 2Phases-RLDP with
an MRE value of 6.85 × 10−4. As the number of nodes
approaches the maximum value, the MRE for Local2Rounds
decreases to 1.42×10−6, closely aligning with the other two
protocols. In comparison, MPC-based protocols exhibit a
lower MRE value than both Local2Rounds and 2Phases-RLDP.
As the number of nodes increases, the disparity between the
MRE values of MPC-L and the other protocols widens. At
the maximum node count, the MRE values for MPC-G and
MPC-L reach 7.73 × 10−11 and 2.00 × 10−11, highlighting
the accuracy achieved by the MPC-based methods.

Fig. 3(b) demonstrates that our MPC-based methods
exhibit favorable utility compared to alternative protocols
in the context of the wedge counting task. For example,
with 1,000 nodes, the MPC-G method achieves an MRE
value of 7.47 × 10−4, showing a modest improvement
over Local2Rounds (by a factor of approximately 1.3) and
ARRTwoNS (by a factor of 1.15), given that Local2Rounds and
ARRTwoNS have MRE values of 5.78×10−4 and 1.09×10−3,
respectively. In addition, MPC-L presents a further increase
in accuracy, with an MRE value of 1.93 × 10−4, which is
around 3 times more accurate than Local2Rounds and 5.64
times more accurate than ARRTwoNS. When n is set to the
maximum value of 106, all alternative protocols achieve a
similar MRE value of 1.41 × 10−8. At this point, our MPC-
L protocol outperforms the alternatives by a factor of 70 in
terms of accuracy.

Fig. 3(c) highlights critical differences in the perfor-
mance of various methods for the triangle counting task,
with MPC-G and MPC-L consistently achieving superior
estimation accuracy compared to alternative protocols. No-
tably, MPC-L exceeds all other methods, delivering the low-
est MRE values across different node counts. For example, at
5,000 nodes, MPC-L achieves an MRE value of 2.37× 10−4,
while MPC-G reports an MRE value of 9.18×10−4, which is
2.38 time and 9.20 time more accurate than the existing best
approaches ARRTwoNS. As the number of nodes increases,
the MRE values for all protocols generally decrease. How-
ever, the rate of improvement varies considerably among
the different methods. The MPC-G and MPC-L methods
exhibit the most pronounced reductions in MRE values as
node count increases. The Local2Rounds protocol displays a
slower reduction line as the node count increases, leading to
a widening performance gap compared to the MPC-based
techniques. ARRTwoNS, 2Phases-RLDP and WShuffle∗ follow
a similar trajectory, with their MRE values decreasing at a
comparable pace, yet lagging behind our protocols.
MRE vs. privacy budget ε. Fig. 4 displays the result of three
counting tasks under different privacy levels, denoted by
parameter ε ranging from 1 to 10. In edge counting task,
at a higher privacy level (ε = 1), the Mean Relative Error
(MRE) values for MPC-G and MPC-L stand at 1.12 × 10−3

and 2.51× 10−4. In contrast, Local2Rounds exhibits an MRE
value of 1.28 × 10−2 and ARRTwoNS has an MRE value of
1.43 × 10−2, both approximately one order of magnitude
higher. As the privacy budget increases to ε = 10, the
MRE values for MPC-G and MPC-L reach 1.55 × 10−8 and
4.00 × 10−9, In comparison, Local2Rounds and ARRTwoNS
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Fig. 4: Relation between the MRE and privacy budget ε of
different protocols, with α fixed to 0.5, n fixed to 10,000

have MRE values of 1.47 × 10−5 and 1.46 × 10−5, which
are three orders of magnitude higher. WShuffle∗ exhibits an
MRE of 3.22 × 10−5, approximately four orders of magni-
tude higher, while 2Phases-RLDP performs better with an
MRE of 4.51×10−7, but still one to two orders of magnitude
higher than our MPC-based methods.

The outcomes of the wedge counting task are presented
in Fig. 4(b). At a high privacy level (ε = 1), the Mean
Relative Error (MRE) values for MPC-G and MPC-L stand
at 3.09× 10−7 and 8.00× 10−8, respectively. In comparison,
both ARRTwoNS and Local2Rounds have MRE values ap-
proximately one order of magnitude higher than the MPC-
based methods, with 2.91 × 10−6 and 2.93 × 10−6, respec-
tively. Upon increasing the privacy budget to ε = 10, a
general decrease in MRE values is observed for all protocols.
However, MPC-G and MPC-L, maintain higher utility, with
MRE values of 3.09 × 10−8 and 8.00 × 10−9, respectively.
In contrast, 2Phases-RLDP remains two orders of magnitude
higher than the MPC-based methods. Meanwhile, WShuffle∗

has an MRE of 1.32 × 10−5, approximately three orders of
magnitude higher, and both ARRTwoNS and Local2Rounds
still exhibit MRE values 10 times higher.

In Fig. 4(c), we assess the outcomes of the triangle
counting task. At a low privacy budget (ε = 1), the MRE val-
ues for MPC-G and MPC-L are 1.85×10−6 and 4.80×10−7,
respectively, which is 12 times more accurate than the ex-
isting best protocol (ARRTwoNS). When the privacy level
increases to ε = 10, the MRE values of MPC-G and MPC-L
decrease rapidly to 1.85×10−7 and 4.80×10−8, respectively,
marking their scalability in maintaining high accuracy in
more privacy-sensitive scenarios. In comparison, the MRE
of ARRTwoNS and WShuffle∗ remains almost constant with
increasing privacy budget, implying a limited improvement
in accuracy for loose privacy demands. Local2Rounds records
an MRE of 8.71× 10−6 at ε = 10, lower than before but still
higher than the MPC-based approaches.

This evaluation emphasizes the relative advantages
of MPC-G and MPC-L regarding estimation accuracy for
different subgraph counting tasks, signifying that these
approaches are optimally suited for privacy-sensitive situ-
ations involving this type of graph analysis. The trend anal-
ysis reveals that while some protocols show improvement
in accuracy with a higher privacy budget, the MPC-based
methods consistently outperform the others.
n vs. communication overhead and runtime. In Fig. 5,
we investigate the communication overhead and runtime
of various edge and wedge protocols under different n set-
tings, as depicted in the first row of Fig. 5. It is noteworthy
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Fig. 5: Communication overhead and time on synthetic
datasets including various n for edge counting, wedge
counting (first row), and triangle counting (second row). The
bandwidth limit is 1000Mbps between clients and servers,
and 10Gbps for servers’ interaction.

that our MPC-CE and MPC-CW protocols exhibit identical
communication overheads, with each server receiving a sin-
gle float (16 bits) number. As demonstrated in Fig. 5(a), the
communication overhead per client is 48 bits when c = 3.
In contrast, WShuffle∗ incurs significantly higher overhead,
as the protocol necessitates each client to download n

2 user
pairs from the server during every counting procedure.

Fig. 5(b) and (c) present the communication overhead
for a single server and the corresponding transmission time,
given a bandwidth constraint of 1000 Mbps. For n = 106,
the costs are as follows: 30.52 Mbits (0.03 s) for Local2Rounds;
30.52 Mbits (0.03 s) for ARRTwoNS; 29.10 Tbits (8.47 hours)
for WShuffle∗; 305.18 Mbits (0.305 s) for 2Phases-RLDP; and
15.25 Mbits (0.015 s) for MPC-based methods. As illustrated
in Figs. 2 to 4, MPC-based methods outperform other proto-
cols in terms of accuracy and efficiency for edge and wedge
counting tasks. The second row of Fig. 5 reveals that MPC-
based methods are communication-intensive due to the
requirement to transmit secret share matrices, which have
a size of O(n2) and are stored in integer format (32 bits).
Consequently, our protocols’ overhead grows at the rate of
the square (for the client side) and the cube (for the server
side) as n increases. Local2Rounds follows a similar growth
pattern, given its two-round communication of noisy graph
data.

In particular, when n = 10, 000, the MPC-CT++ pro-
tocol requires each server to collect 38.80 GB of data from
all participating clients, resulting in each client transmitting
3.87 MB to the server. Assuming a bandwidth limit of 1000
Mbps, each server takes 5.29 minutes to receive all necessary
secret shares. However, as n increases to 50, 000, the over-
head grows to 4850.63 GB for a server, necessitating almost
11 hours for data transfer. Considering that our MPC-based
protocols outperform other existing protocols by an average
of 100 times in terms of utility, this level of efficiency is
highly competitive for the triangle counting task.
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TABLE 3: MRE result on real datasets when ε = 1. Each row represents a tested protocol, containing edge counting result
(the first sub-row) and wedge counting result (the second sub-row). The lowest MRE on each dataset for different counting
tasks is highlighted in bold.

dataset Email Facebook Wiki-V CondMat Slashdot Twitter Stanford Amazon Google Youtube Wiki-T Patents

local2

Rounds

0.0147 0.0084 0.0075 0.0021 0.0038 0.001 0.0137 0.0008 0.001 0.0068 0.0152 3E-05

3.2261 7.4506 6.5774 6.1035 26.21 14.183 200.84 66.614 51.58 597.36 1229.4 3.6386

ARR

TwoNS

0.0078 0.0016 0.0013 0.0012 0.0002 6E-05 6E-05 5E-05 3E-05 4E-05 2E-05 7E-06

0.8997 0.256 0.1844 1.9317 0.1067 0.0415 0.0036 0.2312 0.0329 0.0174 0.0029 0.1458

WShuffle
0.0078 0.0016 0.0013 0.0012 0.0002 6E-05 6E-05 5E-05 3E-05 4E-05 2E-05 7E-06

0.8997 0.256 0.1844 1.9317 0.1067 0.0415 0.0036 0.2312 0.0329 0.0174 0.0029 0.1458

2Phases

-RLDP

0.0022 0.0008 0.0009 0.0018 0.0007 0.001 0.0003 0.0003 0.0002 0.0004 0.0004 0.0001

0.1668 0.0644 0.0512 0.4707 0.0667 0.0245 0.0111 0.152 0.0367 0.0459 0.0142 0.049

MPC-G
0.0002 4E-05 4E-05 4E-05 8E-06 2E-06 2E-06 2E-06 9E-07 1E-06 8E-07 2E-07

0.0033 0.0017 0.0019 0.0454 0.0044 0.0014 0.0003 0.0216 0.0047 0.003 0.0007 0.0435

MPC-L
6E-05 1E-05 1E-05 1E-05 2E-06 4E-07 5E-07 4E-07 2E-07 3E-07 2E-07 6E-08

0.0008 0.0004 0.0005 0.0118 0.0011 0.0004 7E-05 0.0056 0.0012 0.0008 0.0002 0.0042

4.3 Experimental Results on Real datasets

Edge and wedge counting tasks. In Table 3, we present
the Mean Relative Error (MRE) results for edge and wedge
counting tasks on twelve real-world datasets, as described
in Section 4.1. We set the global value of ε to 1. Each row
in the table represents a tested protocol, with the first sub-
row illustrating the MRE for edge counting, and the second
sub-row depicting the MRE for wedge counting.

Considering the Facebook dataset, the MRE values
for edge counting include: MPC-L (1E-05), MPC-G (4E-
05), 2Phases-RLDP (0.0008), ARRTwoNS (0.0016), WShuffle∗

(0.0016), and Local2Rounds (0.0084). For the same dataset,
the MRE values for wedge counting are: MPC-L (0.0004),
MPC-G (0.0017), 2Phases-RLDP (0.0644), ARRTwoNS (0.256),
WShuffle∗ (0.256), and Local2Rounds (7.4506). A detailed ex-
amination of the Facebook dataset shows that the MPC-
based protocols outperform other protocols on average
by 271 times for edge counting and 4,630 times for
wedge counting. When extending the comparison across
all datasets, the average utility gap increases to 3,016 times
for edge counting and 212,758 times for wedge counting.
This evaluation highlights that the MPC-based protocols
consistently perform better than other tested protocols for
both edge and wedge counting tasks. In particular, the MPC-
L protocol reaches the lowest MRE values, indicating the
highest accuracy among the analyzed protocols.

Nonetheless, there are instances where other proto-
cols exhibit competitive performance. For example, in the
Patents dataset, the 2Phases-RLDP protocol achieves an MRE
value of 0.049 for wedge counting, which is relatively close
to the performance of MPC-G (0.0145) and MPC-L (0.0042),
about 3 times and 11 times less accurate, respectively. This
observation suggests that the 2Phases-RLDP protocol may
be effective in counting wedges for certain datasets with
specific structural properties, such as sparsity or unique
connectivity patterns. Another interesting finding emerges
from the Amazon dataset for wedge counting, where the
2Phases-RLDP protocol attains an MRE value of 0.1520. This
value is only marginally higher than the MPC-G protocol
(0.0216) and the MPC-L protocol (0.0055). Considering com-

munication overhead, this result implies that the 2Phases-
RLDP protocol could be a viable choice for certain datasets
where the data distribution and structure align well with its
underlying assumptions. These exceptional cases underline
the importance of understanding the specific properties and
characteristics of the datasets when selecting an appropriate
protocol for a given task.

In conclusion, the careful comparison of MRE values
emphasizes the benefits of the MPC-based protocols, MPC-
G and MPC-L, in terms of utility, consistency, privacy
preservation, and scalability. These factors position them as
the preferred protocols for edge and wedge counting tasks
among the evaluated alternatives.
Triangle counting task. In Fig. 6, we illustrate the MRE
values associated with the triangle counting task, spanning
ε values from 1 to 10. Globally, the MRE values for all pro-
tocols exhibit a decreasing trend with increasing ε values,
irrespective of the specific real-world dataset being assessed.
It is important to note that distinct protocols display unique
patterns in their response to fluctuations in ε.

Among these protocols, ARRTwoNS∆ demonstrates no-
table robustness against fluctuations in ε. To illustrate,
within the Twitter dataset, the MRE of the ARRTwoNS∆

protocol experiences a decrement from 0.0824 at ε = 1 to
0.0549 at ε = 3. Subsequent to this interval, the MRE reduc-
tion rate exhibits a diminishing trend, ultimately converging
to 0.0521 when ε is assigned a value of 10. The WShuffle∗∆
protocol is also of particular interest, as it is characterized by
a decline curve that resembles a negative exponential func-
tion when the graph data comprises a relatively small node
count. For instance, in the Facebook dataset, as depicted in
Fig. 6(2), the MRE of WShuffle∗∆ undergoes a decrease as ε
initially increases. As the value of ε continues to rise, the
reduction rate exhibits a decelerating pattern, suggesting
that the MRE could approach a plateau given a sufficiently
large privacy budget ε. This distinct behavior can also be
observed in the proposed MPC-based protocols and the
2Phases-RLDP∆ protocol. However, when analyzing graph
data containing a greater number of nodes, such as the
Stanford dataset and the Wiki-T dataset, the decline curve of
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Fig. 6: MRE result for the triangle counting task.

WShuffle∗∆ is nearly linear with respect to the increment of ε.
This pattern is comparable to the Local2Rounds∆ protocol,
which displays an almost linear decline curve across all
examined datasets.

In an analysis encompassing all investigated datasets,
our proposed MPC-G and MPC-L protocols consistently
attain the lowest MRE values, resulting in the highest
utility. Within each subgraph illustrating the outcomes of
the examined datasets, the MRE curve associated with our
proposed MPC-based methods invariably occupies the most
favorable position. This finding underscores the superiority
of our proposed protocols in terms of utility, adaptability,
and scalability. For example, with ε set to 6, our approach
outperforms the best existing strategies by a factor of 40
(1.59 times for the smallest dataset and 275 times for the
largest dataset).

An exception to this trend can be observed in the
data presented in Fig. 6(12). Specifically, for ε = 1, 2 and
ε = 9, 10, the ARRTwoNS∆ and Local2Rounds∆ protocols
exhibit lower MRE values compared to our MPC-L pro-
tocol. This deviation may be ascribed to factors such as
node count, graph sparsity, and the clustering coefficient

of the graph data. Based on empirical evidence, when the
node count is larger, the graph denser, and the clustering
coefficient higher, the competing protocols tend to achieve
lower MRE values. These observed limitations also suggest
potential avenues for refining and optimizing our protocol
in future developments, further expanding its applicability
to diverse graph data scenarios.

For graph data with node counts below 4,000,000, our
protocols remain a more advantageous choice in compari-
son to other existing protocols. The consistently low MRE
values achieved by our protocols suggest that they can
provide more accurate results in the triangle counting task,
thereby enhancing the quality of the obtained data. Fur-
thermore, our protocols are scalable and can be effectively
applied to various types of graph data. The combination
of utility, adaptability, and scalability renders our proposed
methods an attractive option for graph data analysis.

5 RELATED WORK

• Subgraph Counting The purpose of subgraph counting
is to identify the occurrences of a specific pattern (or a
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query graph) within a labeled graph. In this related work
section, we first present an overview of traditional subgraph
counting methods, followed by a discussion of recent deep
learning-based approaches. Lastly, we address the privacy-
preserving problem and its significance in the context of
subgraph counting tasks.

Traditional studies on subgraph counting primarily fall
into two categories: summary-based methods [22], [23],
[24] and sampling-based methods [25], [26], [27], [28], [29].
Summary-based methods involve decomposing the query
graph into smaller subgraphs and estimating the final result
by aggregating the counts of these smaller subgraphs. Con-
versely, sampling-based methods generate sampled sub-
graphs and match them to the query subgraphs.

With the advent of deep learning, recent studies [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41],
[42], [43] have proposed the use of deep neural networks
in subgraph analysis tasks, subject to specific estimation
error bounds. These works explore various aspects of sub-
graph counting, such as network community search in
multiplex networks, subgraph containment, benchmarking
frameworks, techniques for reducing search space and im-
proving efficiency, and scaling up subgraph matching on
single machines using FPGAs. A major focus of these deep
learning-based approaches is the development of improved
GNN models for subgraph counting, a fundamental aspect
of subgraph analysis [29], [30], [31], [34], [35].

Despite the high-performance potential of deep
learning-based methods in subgraph counting, few works
have addressed the increasingly important privacy-
preserving problem. To date, two primary method
paradigms have demonstrated effectiveness in tackling this
problem: central differential privacy (DP) and local differ-
ential privacy (LDP). These paradigms cater to different
application scenarios and provide a foundation for further
exploration in privacy-preserving subgraph counting.
• CDP-based Methods for Subgraph Counting. Subgraph
counting under the context of Central Differential Privacy
(CDP) has emerged as a significant area of investigation in
the field of cybersecurity. This paradigm entails the exis-
tence of a reliable third-party server, which is responsible for
computing diverse graph metrics from cooperating clients,
all the while maintaining the confidentiality of their private
data from external inquiries.

In CDP, a trusted centralized curator collects and main-
tains graph data from individual clients. The curator applies
a differential privacy strategy to the consolidated graph,
safeguarding sensitive information when releasing different
types of graph statistics, including connections, subgraph
counts, and degree distribution. A majority of prior research
considers two graphs as neighbors if they differ by a single
edge, referred to as the edge-differential privacy model.
Several studies have focused on developing algorithms that
ensure privacy under this model while providing accurate
graph statistics.

In contrast to edge-differential privacy, node-
differential privacy pertains to cases where one graph
is derived from another by merely adding or removing
a node. This model has been explored by various
researchers. Liu et al. [44] introduced the concept of
dependent differential privacy, where nodes in graph

data are correlated with one another. They subsequently
proposed a dependent perturbation mechanism to ensure
privacy against adversaries with prior knowledge of node
dependence. Borgs et al. [45] employed a novel variation
of Lipschitz extensions on large, sparse networks under
node-differential privacy. They later improved upon their
work [46] by conducting a more advanced analysis of the
upper bound, thus reducing their error rate approximately
quadratically. In a subsequent study, Sealfon [47] developed
an edge counting estimator constrained by node-differential
privacy for instances where Lipschitz extensions are
unknown or unavailable. Their results exhibited greater
efficiency than those of Borgs’ works. Existing literature on
centralized graph settings, encompassing both edge and
node differential privacy, relies on a trusted curator with
comprehensive knowledge of the entire graph.

However, our method focuses on a different scenario
in which each subgraph owner applies DP algorithms lo-
cally before uploading data to the curator. This approach
mitigates the risk of data breaches, as it can be challenging
to find a reliable third-party data aggregator in real-world
situations.
• LDP-based Methods for Subgraph Counting. In the
context of local differential privacy (LDP), the entire graph
is distributed among participating clients, with the curator
lacking access to their subgraphs. Numerous studies have
examined LDP’s general procedure in various network se-
curity contexts [1], [2], [3], [4], [21], [48], [49], [50], [51],
[52]. These approaches require clients to generate carefully
designed random coefficients, which they incorporate as
noise terms within local query results before transmission
to the untrusted data curator. Subsequently, the curator
conducts post-processing on the noisy data, estimating final
query outputs and disseminating them to the participants.

Qin et al. [48] pioneered work on decentralized graphs
employing local differential privacy, devising LDPGen, a
multi-phase protocol that generates synthetic graphs and
streamlines subsequent graph analysis tasks. Sun et al. [3]
enhanced LDPGen by positing that each node maintains a
2-hop extended local view, thereby capitalizing on clients’
correlation knowledge and yielding superior experimental
results. Liu et al. [2] unveiled Edge-RLDP, a novel method
enabling graph curators to allocate disparate local privacy
budgets to participants based on nodes’ mutuality within
the noisy graph. However, these techniques fall short of
meeting stringent privacy-preserving stipulations in certain
network security contexts, such as online social networks.

Addressing this limitation, Wei et al. [49] tailored a local
privacy-preserving strategy for attributed graphs, unveiling
AsgLDP and attaining an optimal privacy-utility trade-off
while preserving innate graph properties. Ye et al. [50]
concentrated on computing the clustering coefficient and
community detection in LF-GDPR, harnessing Warner’s RR
(Randomized Response) for subgraph adjacency matrices.
Regrettably, this method introduced significant bias in the
triangle count. Although their approximation technique
[51] aimed to produce more accurate results, estimations
remained biased. Imola et al. [4] observed that two-round
communication outperformed LF-GDPR in terms of accu-
racy and refined their algorithm in [1] by integrating edge
sampling and double clipping, concurrently reducing trans-
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mission overhead and Laplacian noise. In [21], they pro-
posed one-round triangle and 4-cycle counting algorithms,
leveraging a wedge shuffle technique to further expand the
local differential privacy budget.

Despite the efficacy of differential privacy strategies in
tackling large-scale graph pattern mining tasks in network
security, applying LDP to small and medium-sized graphs
results in unacceptably high estimation errors. To surmount
this challenge, our work innovatively employs multi-party
computation (MPC) for counting graph statistics such as
edges, wedges, and triangles, taking into account its strin-
gent cryptographic constraints.

6 CONCLUSION

In this study, we investigate the problem of accurately
counting edges, wedges, and triangles in fully distributed
graphs, wherein each node retains its connections locally
and privately. We note that existing Local Differential Pri-
vacy (LDP)-based protocols exhibit substantial estimation
errors, particularly for small and medium-sized graphs.
To address this limitation, we introduce Multi-Party Com-
putation MPC-based protocols for securely and precisely
computing these statistics, ensuring no information about
individual node connections is leaked. Through a series
of experiments using real-world and simulated datasets,
we demonstrate that our proposed protocols achieve up
to 100 times greater accuracy compared to state-of-the-art
protocols. In the current implementation of our protocol,
we assume that each server faithfully executes the protocol.
Recent research [53], [54], [55] indicates that data poisoning
attacks have the potential to cause the protocol to yield
significantly inaccurate results.

As future work, we aim to adapt our protocols to
address malicious models. Additionally, we plan to de-
velop MPC-based protocols for counting subgraphs in more
complex graph structures, such as directed graphs, signed
graphs, and heterogeneous graphs, as well as subgraphs
containing more than three nodes.
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rényi graphs with node differential privacy. In Proc. NeurIPS’19,
pages 3770–3780, 2019.

[48] Zhan Qin, Ting Yu, Yin Yang, Issa Khalil, Xiaokui Xiao, and Kui
Ren. Generating synthetic decentralized social graphs with local
differential privacy. In Proc. CCS’17, pages 425–438, 2017.

[49] Chengkun Wei, Shouling Ji, Changchang Liu, Wenzhi Chen, and
Ting Wang. Asgldp: collecting and generating decentralized at-
tributed graphs with local differential privacy. IEEE Transactions
on Information Forensics and Security, 15:3239–3254, 2020.

[50] Qingqing Ye, Haibo Hu, Man Ho Au, Xiaofeng Meng, and Xiaokui
Xiao. Towards locally differentially private generic graph metric
estimation. In Proc. ICDE’20, pages 1922–1925. IEEE, 2020.

[51] Qingqing Ye, Haibo Hu, Man Ho Au, Xiaofeng Meng, and Xiaokui
Xiao. Lf-gdpr: A framework for estimating graph metrics with
local differential privacy. IEEE Transactions on Knowledge and Data
Engineering, 2020.

[52] Hailong Zhang, Sufian Latif, Raef Bassily, and Atanas Rountev.
Differentially-private control-flow node coverage for software us-
age analysis. In Proc. USENIX Security’20, pages 1021–1038, 2020.

[53] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Data poi-
soning attacks to local differential privacy protocols. In 30th
{USENIX} Security Symposium ({USENIX} Security 21), 2021.

[54] Albert Cheu, Adam Smith, and Jonathan Ullman. Manipulation
attacks in local differential privacy. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 883–900. IEEE, 2021.

[55] Yongji Wu, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong.
Poisoning attacks to local differential privacy protocols for {Key-
Value} data. In 31st USENIX Security Symposium (USENIX Security
22), pages 519–536, 2022.

Pinghui Wang (Senior Member, IEEE) is cur-
rently a Professor with the MOE Key Labora-
tory for Intelligent Networks and Network Secu-
rity, Xi’an Jiaotong University, Xi’an, China, and
also with the Shenzhen Research Institute, Xi’an
Jiaotong University, Shenzhen, China. His re-
search interests include internet traffic measure-
ment and modeling, traffic classification, abnor-
mal detection, and online social network mea-
surement.

Dongxu Zeng received B.S. in computer sci-
ence from Zhejiang University of Technology,
Hangzhou, China, in 2022. He is currently a
Ph.D. student with MOE Key Laboratory for In-
telligent Networks and Network Security at Xi’an
Jiaotong University. His research interests in-
clude big data, data mining, privacy-preserving
computation, and secure computation.

Shiqi Lou is currently a junior student with the
MOE Key Laboratory for Intelligent Networks
and Network Security, Xi’an Jiaotong University,
Xi’an, China, and also with Luo lab Undergrad-
uate Division, Xi’an Jiaotong University, Xi’an,
China. His research interests include graph neu-
ral networks, spatiotemporal neural networks,
anomaly detection, social network analysis, and
network security.

Haoxin Yang received B.S. in automation en-
gineering from Xi’an Jiaotong University, Xi’an,
China, in 2018. He is currently a graduate stu-
dent with MOE Key Laboratory for Intelligent
Networks and Network Security at Xi’an Jiao-
tong University. His research interests include
big data, data mining, privacy-preserving com-
putation, and secure computation.

Page 15 of 16 Transactions on Dependable and Secure Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

Tao Qin received B.S. degree in information en-
gineering and Ph.D. degree in computer science
and technology from Xi’an Jiaotong University,
Xi’an, China, in 2004 and 2010 respectively. He
is a visiting scholar at the Department of Elec-
trical and Computer Engineering, University of
Massachusetts, Amherst from 2017 to 2018. He
is currently a Professor at the Department of
Computer Science and Technology, Xi’an Jiao-
tong University. His research focuses on Data
Mining, Complex Network Analysis.

Page 16 of 16Transactions on Dependable and Secure Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


